Regional Photovoltaic Power Forecasting Using Vector Autoregression Model in South Korea

نویسندگان

چکیده

Renewable energy forecasting is a key for efficient resource use in terms of power generation and safe grid control. In this study, we investigated short-term statistical model with 1 to 3 h horizons using photovoltaic operation data from 215 plants throughout South Korea. A vector autoregression (VAR) model-based regional system proposed seven clusters This method showed better predictability than the autoregressive integrated moving average (ARIMA) model. The normalized root-mean-square errors hourly predictions obtained VAR were 8.5–10.9% (9.8–13.0%) 18.5–22.8% (21.3–26.3%) horizon, respectively, at plants. coefficient determination, R2 was higher VAR, 4–5%, ARIMA. had greater accuracy will be useful economical management.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

Power Forecasting of Photovoltaic Generation

Photovoltaic power generation forecasting is an important task in renewable energy power system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic power generation forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) using a data acqui...

متن کامل

Solar Power Forecasting Using Support Vector Regression

Generation and load balance is required in the economic scheduling of generating units in the smart grid. Variable energy generations particularly from wind and solar energy resources are witnessing a rapid boost, and, it is anticipated that with a certain level of their penetration, they become noteworthy sources of uncertainty. As in the case of load demand, energy forecasting can also be use...

متن کامل

Bayesian Based Neural Network Model for Solar Photovoltaic Power Forecasting

Solar photovoltaic power (PV) generation has increased constantly in several countries in the last ten years becoming an important component of a sustainable solution of the energy problem. In this paper, a methodology to 24-hour or 48-hour photovoltaic power forecasting based on a Neural Network, trained in a Bayesian framework, is proposed. More specifically, an multi-ahead prediction Multi-L...

متن کامل

Forecasting State Tax Revenue: A Bayesian Vector Autoregression Approach By

This paper compares alternative time-series models to forecast state tax revenues. Forecast accuracy is compared to a benchmark random walk forecast. Quarterly data for California is used to forecast total tax revenue along with its three largest components, sales, income, and corporate tax revenue. For oneand four-quarter-ahead forecasts from 2004 to 2009, Bayesian vector autoregressions gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15217853